A Semiparametric Approach to Dimension Reduction.
نویسندگان
چکیده
We provide a novel and completely different approach to dimension-reduction problems from the existing literature. We cast the dimension-reduction problem in a semiparametric estimation framework and derive estimating equations. Viewing this problem from the new angle allows us to derive a rich class of estimators, and obtain the classical dimension reduction techniques as special cases in this class. The semiparametric approach also reveals that in the inverse regression context while keeping the estimation structure intact, the common assumption of linearity and/or constant variance on the covariates can be removed at the cost of performing additional nonparametric regression. The semiparametric estimators without these common assumptions are illustrated through simulation studies and a real data example. This article has online supplementary material.
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملEfficient Smooth GMM and Dimension Reduction
We propose a new GMM criterion for models defined by conditional moment restrictions based on local averaging. It resembles a statistic based on smoothing techniques used in specification testing. Depending on whether the smoothing parameter is fixed or decreases to zero with the sample size, our approach defines a whole class of estimators. We show that consistency and asymptotic normality fol...
متن کاملAn Adaptive Estimation Method for Semiparametric Models and Dimension Reduction
Xia, Tong, Li and Zhu (2002) proposed a general estimation method termed minimum average variance estimation (MAVE) for semiparametric models. The method has been found very useful in estimating complicated semiparametric models (Xia, Zhang and Tong, 2004; Xia and Härdle, 2006) and general dimension reduction (Xia, 2008; Wang and Xia, 2008). The method is also convenient to combine with other m...
متن کاملOn Partial Sufficient Dimension Reduction with Applications to Partially Linear Multi-index Models
Partial dimension reduction is a general method to seek informative convex combinations of predictors of primary interest, which includes dimension reduction as its special case when the predictors in the remaining part are constants. In this paper, we propose a novel method to conduct partial dimension reduction estimation for predictors of primary interest without assuming that the remaining ...
متن کاملLocal likelihood regression in generalized linear single-index models with applications to microarray data
Searching for an effective dimension reduction space is an important problem in regression, especially for high dimensional data such as microarray data. A major characteristic of microarray data consists in the small number of observations n and a very large number of genes p. This “large p, small n” paradigm makes the discriminant analysis for classification difficult. In order to offset this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 107 497 شماره
صفحات -
تاریخ انتشار 2012